menu search
brightness_auto
more_vert
2 3
thumb_up_off_alt 2 like thumb_down_off_alt 0 dislike

3 Answers

more_vert
0

The bag of words algorithm is a popular approach used in natural language processing to represent text data as a set of features or vectors that can be used in machine learning models. Here are the steps to implement the bag of words algorithm:

  1. Collect the text documents you want to analyze. In this case, we have three documents about Amit and Amita.

  2. Preprocess the text data by removing stop words, punctuation, and other irrelevant information. For example, we can remove "and" and "are" from Document 1, as they do not contribute to the meaning.

  3. Tokenize the text data into individual words or terms. For example, we can tokenize Document 2 into "Amit", "lives", "with", "his", "grandparents", "in", and "Shimla".

  4. <p style="border: 0px solid rgb(217, 217, 227); box-sizing: border-box; --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert
0

The bag of words algorithm is a popular approach used in natural language processing to represent text data as a set of features or vectors that can be used in machine learning models. Here are the steps to implement the bag of words algorithm:

  1. Collect the text documents you want to analyze. In this case, we have three documents about Amit and Amita.

  2. Preprocess the text data by removing stop words, punctuation, and other irrelevant information. For example, we can remove "and" and "are" from Document 1, as they do not contribute to the meaning.

  3. Tokenize the text data into individual words or terms. For example, we can tokenize Document 2 into "Amit", "lives", "with", "his", "grandparents", "in", and "Shimla".

  4. <p style="border: 0px solid rgb(217, 217, 227); box-sizing: border-box; --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike
more_vert
0

The bag of words algorithm is a popular approach used in natural language processing to represent text data as a set of features or vectors that can be used in machine learning models. Here are the steps to implement the bag of words algorithm:

  1. Collect the text documents you want to analyze. In this case, we have three documents about Amit and Amita.

  2. Preprocess the text data by removing stop words, punctuation, and other irrelevant information. For example, we can remove "and" and "are" from Document 1, as they do not contribute to the meaning.

  3. Tokenize the text data into individual words or terms. For example, we can tokenize Document 2 into "Amit", "lives", "with", "his", "grandparents", "in", and "Shimla".

  4. <p style="border: 0px solid rgb(217, 217, 227); box-sizing: border-box; --tw-border-spacing-x:0; --tw-border-spacing-y:0; --tw-translate-x:0; --tw-translate-y:0; --tw-rotate:0; --tw-skew-x:0; --tw-skew-y:0; --tw-scale-x:1; --tw-scale-y:1; --tw-pan-x: ; --tw-pan-y: ; --tw-pinch-zoom: ; --tw-scroll-snap-strictness:proximity; --tw-ordinal: ; --tw-slashed-zero: ; --tw-numeric-figure: ; --tw-numeric-spacing: ; --tw-numeric-fraction: ; --tw-ring-inset: ; --tw-ring-offset-width:0px; --tw-ring-offset-color:#fff; --tw-ring-color:rgba(59,130,246,0.5); --tw-ring-offset-shadow:0 0 transparent; --tw-ring-shadow:0 0 transparent; --tw-shadow:0 0 transparent; --tw-shadow-colored
thumb_up_off_alt 0 like thumb_down_off_alt 0 dislike

Related questions

thumb_up_off_alt 2 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 2 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 3 like thumb_down_off_alt 0 dislike
1 answer
thumb_up_off_alt 3 like thumb_down_off_alt 0 dislike
0 answers
Welcome to Aiforkids, where you can ask questions and receive answers from other members of the community.

AI 2024 Class 10 Board Exams mein 100% laane ka plan OPEN NOW

Class 10 Complete One Shot AI Lectures at - Youtube

1.5k questions

1.4k answers

4 comments

7.6k users

...